 A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE

 bureau of pubuc roads

VOL.19, NO. 10
DECEMBER 1938

PUBLIC ROADS
 \rightarrow A Journal of Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS
D. M. BEACH, Editor

December 1938
Volume 19, No. 10

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

Principles of Soil Mechanics Involved in the Design of Retaining Walls and Bridge Pase
Abutments

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D. C. REGIONAL HEADQUARTERS Federal Building, Civic Center, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg. DISTRICT No. 2. California, Arizona, and Nevada.

Federal Building, Civic Center, San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
254 New Customhouse, Denver, Colo. DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Masonic Temple Building, Nireteenth and Douglas Sts., Omaha, Nebr. DISTRICT No. 6. Arkansas, Louisiana, Oklahema, and Texas.

Room 502, United States Courthouse, Fort Worth, Tex. DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.

So ath Chicago Post Office Building, Chicago, Ill

DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, and Tennessee.
Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. 505 Post Office Building, Albany, N. Y.
DISTRICT No. 10. Delaware, Maryland, Ohio, Pennsylvania, and District of Columbia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building. Ogden, Utah.
DISTRICT No. 14. North Carolina, South Carolina, Virginia, and West Virginia.

Montgomery Building, Spartanburg, S. C.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institution other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain PUBLIC ROADS can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

PRINCIPLES OF SOIL MECHANICS INVOLVED IN THE DESIGN OF RETAINING WALLS AND BRIDGE ABUTMENTS

BY THE DIVISION OF TESTS, BUREAU OF PUBLIC ROADS

Reported by L. A. PALMER, Associate Chemist

IN A LARGE NUMBER of earth pressure and foundation problems the stresses found by the method based on elasticity are independent of elastic constants and are classified as problems of plane strain or plane deformation. These are problems involving two dimensions, and in their solution an analysis is made of the stresses in a vertical cross section of the earth embankment or supporting soil under a foundation. The limitations of the analytical method based on the assumption of the conditions of plane strain are indicated in this paper in the case of the supporting soil under abutments, piers, and retaining walls.

The principle of superimposition of different systems of loading is applied to problems of plane strain in deriving expressions for the greatest shearing stress in the undersoil below a symmetrical fill and a bridge abutment. The greatest unit shearing stress anywhere in the undersoil below a fill having equal side slopes and the top surface parallel to the subgrade surface is approximately $0.3 p$, where p is the unit pressure of fill material at the subsoil level beneath the roadway. If $0.3 p$ is less than the unit cohesion c of the undersoil, the latter is safe insofar as ultimate failure is concerned. However, when $0.3 p$ exceeds c of the undersoil, it does not follow that failure is inevitable. In such a case Prandtl's formula is applied,

$$
q=\left(c \cot \phi+w b^{\prime} \cot \alpha\right)\left[\frac{1+\sin \phi}{1-\sin \phi} e^{\pi \tan \phi}-1\right]
$$

where, with respect to the undersoil,

$$
\begin{aligned}
& q=\text { supporting power, } \\
& c=\text { unit cohesion, } \\
& w=\text { unit weight, } \\
& \phi=\text { angle of internal friction, } \\
& \alpha=45^{\circ}-\phi / 2, \text { and } \\
& b^{\prime}=1 / 2 \text { the horizontal distance between the midpoints of the } \\
& \quad \text { slopes of the symmetrical fill. }
\end{aligned}
$$

By this formula, the factor of safety against failure of the supporting soil is the ratio, $\frac{q}{p}$.

The maximum shearing stress in the soil below the base of an abutment subjected to a rotating moment producing a maximum vertical pressure p_{0} at the toe is $\frac{p_{0}}{\pi}$. If $\frac{p_{0}}{\pi}$ is less than the cohesion of the undersoil, it will not fail under this stress. However; if $\frac{p_{0}}{\pi}$ exceeds c, it is necessary to determine the factor of safety $\frac{q}{p_{0}}$
against failure, obtaining q from the formula,
$q=\frac{2 c}{\tan \alpha \sin ^{2} \alpha}+\frac{w a}{2 \tan \alpha}\left[\frac{1}{\tan ^{4} \alpha}-1\right]+\frac{w d}{\tan ^{4} \alpha}$
where
$q=$ supporting power,
$c=$ unit cohesion,
$w=$ unit weight,
$\alpha=45^{\circ}-\phi / 2$,
$d=$ depth of surcharge, and
$a=$ width of the base of the abutment.
The active and passive earth pressures and the earth pressure at rest, in the earth back of retaining walls, are easily determined by using the analytical method of Coulomb and the graphical method of Mohr. The conditions of plane strain are assumed in the application of both methods. Assuming a level earth surface back of the retaining wall, the expressions for the three earth pressures are

$$
p_{h}(\text { active })=p_{v} \tan ^{2}\left(45^{\circ}-\phi / 2\right)-2 c \tan \left(45^{\circ}-\phi / 2\right)
$$

and

$$
p_{h}(\text { at rest })=K p_{0}
$$

$$
p_{h}(\text { passive })=p_{v} \tan ^{2}\left(45^{\circ}+\phi / 2\right)+2 c \tan \left(45^{\circ}+\phi / 2\right)
$$

where

$$
\begin{aligned}
& \phi=\text { angle of internal friction of embankment material, } \\
& c=\text { unit cohesion of embankment material, } \\
& K=\text { coefficient of earth pressure at rest, of the embank- } \\
& \text { ment material, } \\
& p_{h}=\text { horizontal pressure, and } \\
& p_{v}=\text { vertical pressure. }
\end{aligned}
$$

The values, c, ϕ, and K are determined experimentally; p_{h} (active) is the smallest in magnitude of the earth pressures; p_{h} (passive) is the largest; and the earth pressure at rest, p_{h} (at rest) is intermediate in value between these two extremes. If the earth back of the wall moves outward when the wall fails by rotation about the base, the pressure is active. If movement of the wall is exceedingly small or zero, the pressure against it is earth pressure at rest. If the soil back of the wall is cohesive and of a nature such that it tends to expand or swell on wetting and to contract on drying, then, on swelling, the pressure exerted on the wall is passive earth pressure, and the wall should be designed to withstand passive earth pressure.

If the earth back of the wall is cohesionless material such as sand, the maximum pressure against the wall is earth pressure at rest. The value of K for sand has been reported as being within the limits $0: 40$ to 0.45 .

The object of this paper and that of a former one ${ }^{1}$ is to make available for practicing engineers the method based on elasticity as a theoretical and practical approach to the study of earth problems. This method is particularly applicable to a large number of problems falling under the heading of plane strain. In this case the stresses found by the method based on elasticity are independent of the elastic constants, and the difference in the behavior of two different earth materials under loads which are equal and identical in distribution and with the same plane strain conditions is entirely a matter of difference in the relative displacements of the two stressed materials.

[^0]The body under stress is assumed to be very long in comparison with its width, the length being in the Y direction. In this class of problems the stresses and strains are independent of one of the three rectangular coordinates, the Y coordinate in this paper. Examples of this class most frequently considered in textbooks are stresses in thick-walled tubes under internal pressure and stresses produced in a sheet of metal during rolling in which the dimension perpendicular to the direction of rolling is very large. Obviously, neither the tube nor the sheet are of "infinite length," an expression often used in purely mathematical treatments of such problems. In foundation problems, a foundation wall, a fill, an earth dam, a long retaining wall, or a bridge abutment with wing walls may be considered as examples of the plane strain problem.

(3). POSITIVE LOAD DIAGRAM

Figure 1.-A Uniform Load (1), Superimposed on a Negative Load Diagram for a Cut (2), Yields the Positive Load Diagram for a Fill (3).

CALCULATIONS INVOLVE SUPERIMPOSITION OF VARIOUS SYSTEMS OF LOADING

In this paper formulas will be derived for stresses in the supporting earth below (a) a symmetrical fill and (b) a bridge abutment subjected to a rotating moment of such a nature that a trapezoidal load distribution is transmitted by the abutment. Recourse will be had to well known methods of the superimposition of loading systems in these derivations. Further application of the principles of plane strain will be made in the analysis of the three types of earth pressures against retaining walls: (1) Earth pressure at rest; (2) active earth pressure; and (3) passive earth pressure. The method based on plastic equilibrium will be used in deriving an expression for the bearing capacity of soil supporting a bridge abutment and finally, there will be indicated by direct computations the extent of application of the methods based on plane strain in determining earth stresses below loaded rectangular areas of different sizes. These are topics of vital interest to bridge engineers and a continuation of the analysis much beyond the scope of this paper is needed.

Working formulas have been developed by S. D. Carothers ${ }^{2}$ for several different systems of loading, all of which pertain to foundation problems of the plane strain class. It is possible to derive formulas for various additional loading systems by superimposing two or more of those already considered by Carothers. Two examples of this procedure will be given:

1. A uniform load, p, is superimposed on the negative load diagram for a cut so as to yield the load diagram for a fill (see

[^1]

Figure 2.-Development of Diagram Showing Trapezoidal Load Distribution Over a Long Strip.
fig. 1). The loads are infinite in extent in both the X and Y directions, the Y direction being perpendicular to the plane of the figure.
2. By first taking $b=a$ in the upper diagram, $O B C D$, of figure 2, there is obtained a system of triangular loading, $O A B$, over a long strip as indicated. If this triangular load is then given a negative sign, and there is then superimposed on it a strip of uniform pressure, p_{0}, as shown in the lower diagram, there results a trapezoidal load distribution, $O B C D$, over a long strip.

Example 1-Derivation of formulas for stresses beneath a fill.-In problems of plane strain it is usually sufficient to know six stresses: The normal stresses, p_{x} and p_{2}, acting in the directions of the $O X$ and $O Z$ axes, respectively; the principal stresses, p_{1} and p_{2}, acting at right angles to each other and perpendicular to planes of zero shearing stress; the shearing stress, $s_{x z}$, corresponding to the normal stresses, p_{x} and p_{z}; and the maximum shearing stress, $s_{\text {max. }}$ at any point, equal in magnitude to half the difference of the two principal stresses at that point. That is, at any point (x, y, z) in the stressed undersoil,

$$
\begin{equation*}
s_{\max .}=\frac{p_{1}-p_{2}}{2} \tag{1}
\end{equation*}
$$

where p_{1} is the major and p_{2} the minor principal stress. Since displacements in the undersoil in the direction of the $O Y$ axis (perpendicular to the $X O Z$ plane) are zero, it is usually unnecessary to consider the normal stress, p_{y}, acting in this direction. It is necessary, however, to consider the magnitude of p_{ν} at the terminal of a long loaded strip or fill where the retaining wall or abutment is placed. In computing p_{1}, p_{2}, and $s_{\text {max. }}, p_{v}$ is not
needed in problems of plane strain. In texts ${ }^{3}$ dealing with the theory of elasticity, the following relations are derived:

$$
\begin{gather*}
p_{1}=\frac{p_{x}+p_{2}}{2}+\left[\left(\frac{p_{x}-p_{2}}{2}\right)^{2}+\left(s_{x z}\right)^{2}\right]^{1 / 2} \tag{2}\\
p_{2}=\frac{p_{x}+p_{2}}{2}-\left[\left(\frac{p_{x}-p_{2}}{2}\right)^{2}+\left(s_{x 2}\right)^{2}\right]^{1 / 2} \tag{3}\\
s_{\max .}=\frac{p_{1}-p_{2}}{2}=\left[\left(\frac{p_{x}-p_{2}}{2}\right)^{2}+\left(s_{x z}\right)^{2}\right]^{1 / 2} . \tag{4}
\end{gather*}
$$

Hence, if at any point (x, y, z) of the undersoil, the stresses, p_{x}, p_{2}, and s_{x}, are known, values for p_{1}, p_{2}, and $s_{\text {max }}$. are easily derived.

ISOSHEAR LINES DETERMINED FOR MATERIAL BENEATH A FLLL
With reference to the load diagram for a cut in figure 1 , the vertical pressure, p_{2}, at a point (x, y, z) in the undersoil as derived by Carothers was found to be

$$
\begin{align*}
& p_{z}(\text { for cut })=\frac{p}{\pi a}\left[\pi a-a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\right. \\
& \left.\quad-b\left(\alpha_{1}+\alpha_{3}\right)-x\left(\alpha_{1}-\alpha_{3}\right)\right] \tag{5}
\end{align*}
$$

Formula (5) as written is for compression. If p is given a negative sign, then p_{z} is tension. If a uniform compression, p, is added to this tension, i. e., if the expression on the right of formula (5) is subtracted from p, there results the formula for the vertical pressure, p_{z}, at the same point as produced by the load diagram for a fill, figure 3. That is,

$$
\begin{gathered}
p_{z}(\text { for fill })=p-\frac{p}{\pi a}\left[\pi a-a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\right. \\
\left.-b\left(\alpha_{1}+\alpha_{3}\right)-x\left(\alpha_{1}-\alpha_{3}\right)\right]
\end{gathered}
$$

or

$$
\begin{align*}
& p_{z}(\text { for fill, fig. } 3)=\frac{p}{\pi a}\left[a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\right. \\
& \left.\quad+b\left(\alpha_{1}+\alpha_{3}\right)+x\left(\alpha_{1}-\alpha_{3}\right)\right] \tag{6}
\end{align*}
$$

where the angles, α_{1}, α_{2}, and α_{3}, are expressed in radians.
Similarly, by taking Carothers' formulas for p_{x} and $s_{x z}$ for the cut and considering p_{x} and $s_{x z}$ as produced by the uniform compression as p and zero, respectively, there is obtained

$$
\begin{align*}
& p_{x}(\text { for fill })=\frac{p}{\pi a}\left[a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+b\left(\alpha_{1}+\alpha_{3}\right)\right. \\
& \left.+x\left(\alpha_{1}-\alpha_{3}\right)-2 z \log _{e} \frac{R_{1} R_{4}}{R_{2} R_{3}}\right]-\ldots \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
s_{x z}=-\frac{z p}{\pi a}\left(\alpha_{1}-\alpha_{3}\right) \tag{8}
\end{equation*}
$$

By substituting the values for p_{z}, p_{x}, and $s_{x z}$, as given in formulas (6), (7), and (8), in formulas (2), (3), and (4), expressions for the stresses, p_{1}, p_{2}, and $s_{\text {max. }}$, are obtained. Thus

$$
\begin{equation*}
s_{\max .}=\frac{z p}{\pi a}\left[\log _{e}{ }^{2} R_{1} R_{4} R_{2} R_{3}+\left(\alpha_{1}-\alpha_{3}\right)^{2}\right]^{1 / 2} . \tag{9}
\end{equation*}
$$

[^2]
$$
p_{z}=\frac{p}{\pi a}\left[a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+b\left(\alpha_{1}+\alpha_{3}\right)+x\left(\alpha_{1}-\alpha_{3}\right)\right]
$$
$$
p_{x}=\frac{p}{\pi a}\left[a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+b\left(\alpha_{1}+\alpha_{3}\right)+x\left(\alpha_{1}-\alpha_{3}\right)\right.
$$
$$
\left.-2 z \log _{e} \frac{R_{1} R_{4}}{R_{2} R_{3}}\right]
$$
$$
s_{x 2}=-\frac{z p}{\pi a}\left(\alpha_{1}-\alpha_{3}\right)
$$
$$
p_{1}=\frac{p}{\pi a}\left[a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+b\left(\alpha_{1}+\alpha_{3}\right)+x\left(\alpha_{1}-\alpha_{3}\right)\right.
$$
$$
\left.-z \log _{e} \frac{R_{1} R_{4}}{R_{2} R_{3}}\right]+\frac{z p}{\pi a} \sqrt{\log _{e}{ }^{2} \frac{R_{1} R_{4}}{R_{2} R_{3}}+\left(\alpha_{1}-\alpha_{3}\right)^{2}}
$$
$$
p_{2}=\frac{p}{\pi a}\left[a\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+b\left(\alpha_{1}+\alpha_{3}\right)+x\left(\alpha_{1}-\alpha_{3}\right)\right.
$$
$$
\left.-z \log _{e} \frac{R_{1} R_{4}}{R_{2} R_{3}}\right]-\frac{z p}{\pi a} \sqrt{\log _{e}{ }^{2} \frac{R_{1} R_{4}}{R_{2} R_{3}}+\left(\alpha_{1}-\alpha_{3}\right)^{2}}
$$
$$
s_{\text {max. }}=\frac{z p}{\pi a} \sqrt{\log _{e}^{2} \frac{R_{1} R_{4}}{R_{2} R_{3}}+\left(\alpha_{1}-\alpha_{3}\right)^{2}}
$$

Figure 3.-Load Diagram and Computation of Stresses in Earth Below a Fill.

Along the axis, $O Z, R_{1}=R_{4}, R_{2}=R_{3}$, and $\alpha_{1}=\alpha_{3}$. Hence formula (9) reduces to

$$
\begin{equation*}
s_{\text {max. }}=\frac{z p}{\pi a} \log _{e}\left[\frac{R_{1}}{R_{2}}\right]^{2}=\frac{2 z p}{\pi a} \log _{e} \frac{R_{1}}{R_{2}} \ldots \ldots \tag{10}
\end{equation*}
$$

For $a=b$, figure 3, and for points along $O Z$, it is found by trial that the greatest value of $s_{\text {max }}$. is at the point, $z=\frac{3}{2} a$, where $s_{\max }=0.31 p$ (or $0.3 p$ approximately) Similarly, by taking $a=2 b$, the greatest value of $s_{\max }$. at any point on the center line, $O Z$, is at $z=0.96 a$, where $s_{\text {max }}=0.30 \mathrm{p}$. It is worthy of note that these relations are independent of the height, H, of the fill. By varying the height and the slope, and keeping $\frac{a}{b}$ the same, the relation, greatest $s_{\text {max. }}=0.3 p$ at $z=\frac{3}{2} a$ for $a=b$ or at $z=0.96 a$ for $a=2 b$, is not changed, although the magnitude of p and therefore, of $s_{\text {max }}$., increases as H is increased. Here $p=w H$, where w is the average unit weight of fill material.

By drawing accurately and to scale the load diagram, the radial lines, R_{1}, R_{2}, R_{3}, and R_{4}, the vertical and

Figure 4.-Isoshear Lines Under Typical Fill, Where $a=b$.
horizontal distances z and x, respectively, and the subtended angles, α_{1}, α_{2}, and α_{3}, the numerical values of $s_{\text {max }}$. may be computed for various points in the supporting soil. All points of the same $s_{\text {max }}$. may be connected by a smooth curve, and a series of such curves or isoshear lines, as shown in figure 4, may be drawn.

It has been shown ${ }^{4}$ that if the greatest value of $s_{\text {max }}$, namely $0.3 p$, does not exceed the unit cohesion (of the undersoil), the supporting power of the undersoil is usually ample, and that if $0.3 p$ exceeds the unit cohesion, a further analysis of the supporting power of the undersoil should be made.

If $0.3 p$ exceeds the unit cohesion c of the undersoil, it does not follow that failure of the supporting earth is inevitable, but it is necessary in such a case to determine the supporting power q by Prandtl's formula, ${ }^{5}$ which is

$$
q=\left(c \cot \phi+w b^{\prime} \cot \alpha\right)\left[\frac{1+\sin \phi}{1-\sin \phi} e^{\pi \tan \phi}-1\right]
$$

where, with respect to the supporting soil,

$$
\begin{aligned}
& q=\text { supporting power, } \\
& c=\text { the unit cohesion, }
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
& \phi=\text { the angle of internal friction, } \\
& w=\text { unit weight of undersoil, } \\
& b^{\prime}=\frac{a}{2}+b \text { (see figs. } 3 \text { and } 4 \text {), and } \\
& \alpha=45^{\circ}-\phi / 2 .
\end{aligned}
$$
\]

SAMPLE CALCULATION OF SUPPORTING POWER GIVEN

As an example, suppose that q is to be determined for the supporting soil beneath a fill in which the dimension $a=b=20$ feet and which has a height of 20 feet, giving a value for $p=2,000$ pounds per square foot, the unit weight of fill material being 100 pounds per cubic foot. Suppose that the values c and ϕ for the supporting soil are 200 pounds per square foot and 5°, respectively. This value for c is less than $0.3 \times 2,000$ $=600$ pounds per square foot. The value of α is 45° $\frac{5^{\circ}}{2}=42.5^{\circ}$ and $\cot \alpha=1.091$. Assume that w for the undersoil is 100 pounds per cubic foot. The value $\cot 5^{\circ}=11.43, \sin \phi=0.087$ and $\tan \phi=0.0875$. Then by substitution in Prandtl's formula,

$$
\begin{aligned}
q & =(200 \times 11.43+100 \times 30 \times 1.091)\left[\frac{1+0.087}{1-0.087} e^{\pi \times 0.0875}-1\right] \\
& =3,150 \text { pounds per square foot. }
\end{aligned}
$$

The factor of safety against complete failure of the supporting soil is

$$
F=\frac{q}{p}=\frac{3,150}{2,000}=1.6
$$

The approximate working rule, that $0.3 p$ should not exceed the unit cohesion c of the supporting soil, does not take into account the frictional resistance of the undersoil and the resistance offered by the weight of displaced undersoil when it fails. Prandtl's formula takes these factors into account. This approximate rule is usually well on the side of safety against ultimate failure if ϕ is greater than 10° and if the ground-water level is considerably below the surface of the supporting soil. Buoyancy produced by ground water diminishes the value of w in Prandtl's formula.
Only ultimate failure of the supporting soil is considered in the preceding example. It is entirely possible that even with a factor of safety of as much as 2 against ultimate failure, there may nevertheless be displacement of the undersoil to an extent such that the fill settles beyond the maximum allowable amount, and in this event it would be necessary to have a much higher factor of safety than 2 . If a correlation between displacements of large soil masses on the one hand and deformations in laboratory samples on the other were obtained, it should be possible to take a laboratory value c^{\prime} (rather than the ultimate value c) corresponding to the maximum allowable deformation in the supporting soil and refer the factor of safety to this value.
Example 2-Derivation of formulas for stresses beneath a trapezoidal load distribution.-With reference to the upper load diagram, $O B C D$, figure 2, Carothers has derived the formulas for stresses at any point (x, y, z) of the undersoil. For p_{z} at any point he obtains:

$$
\begin{equation*}
p_{2}=\frac{p}{\pi a}\left[a \beta+x \alpha-\frac{a z}{R_{3}{ }^{2}}(x-b)\right] . \tag{11}
\end{equation*}
$$

If $b=a$, angle $\beta=0, R_{3}=R_{2}$, and formula (11) reduces to

$$
\begin{equation*}
p_{z}=\frac{p}{\pi a}\left[x \alpha-\frac{a z}{R_{2}{ }^{2}}(x-a)\right] \tag{12}
\end{equation*}
$$

which is the value of p_{z} at any point (x, y, z) in the undersoil beneath a triangular load ($O A B$, center diagram fig. 2) extending over a long distance in the Y direction. If p is now given a negative sign in formula (12), p_{z} becomes negative at the point. If, now, a strip of uniform pressure, p_{0}, is superimposed on the negative triangular load, $O A B$ (see lower diagram of fig. 2), it is possible to derive the expression for p_{2} at the point (x, y, z) as produced by the trapezoidal load, $O B C D$. Thus, for the uniform pressure, p_{0}, over the strip of width a and represented by the load diagram $O A C D$, lower diagram of figure 2,

$$
\begin{equation*}
p_{z}=\frac{p_{0}}{\pi a}(a \alpha+a \sin \alpha \cos 2 \beta) \ldots \ldots \tag{13}
\end{equation*}
$$

If the expression on the right of formula (12) is now subtracted from the expression on the right of formula (13), there results,

$$
\begin{equation*}
p_{2}=\frac{p_{0}}{\pi a}(a \alpha+a \sin \alpha \cos 2 \beta)-\frac{p}{\pi a}\left[x \alpha-\frac{a z}{R_{2}{ }^{2}}(x-a)\right]-- \tag{14}
\end{equation*}
$$

which is the expression for p_{z} at any point (x, y, z) in the undersoil resulting from the trapezoidal load, $O B C D$, at the surface. In a similar manner it is found that

$$
\begin{align*}
p_{x} & =\frac{p_{0}}{\pi a}(a \alpha-a \sin \alpha \cos 2 \beta) \\
& -\frac{p}{\pi a}\left[x \alpha+\frac{a z}{R_{2}{ }^{2}}(x-a)+2 z \log _{e} \frac{R_{2}}{R_{1}}\right] \ldots \tag{15}\\
s_{x 2} & =\frac{p_{0}}{\pi a}(a \sin \alpha \sin 2 \beta)+\frac{p}{\pi a}\left[z \alpha-a \frac{z^{2}}{R_{2}{ }^{2}}\right] \ldots \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& s_{\max }=\frac{1}{\pi a}\left\{\left[p_{0} a \sin \alpha \cos 2 \beta+p \frac{a z}{R_{2}{ }^{2}}(x-a)+p_{z} \log _{t} \frac{R_{2}}{R_{1}}\right]^{2}\right. \\
& \left.\quad+\left[p_{0} a \sin \alpha \sin 2 \beta+p\left(z \alpha-a \frac{z^{2}}{R_{2}{ }^{2}}\right)\right]^{2}\right\}^{1 / 2} \tag{17}
\end{align*}
$$

By substitution of various values for $\alpha, \beta, R_{1}, R_{2}, x$, and z in formula (17), it is found that the greatest value of $s_{\max }$. is found at the point O, figure 5 , and that this value is equal to $\frac{p_{0}}{\pi}$ where p_{0} is the maximum applied pressure.

Figure 5.-Trapezoidal Load Distribution Diagram. See Formulas (14), (15), (16), and (17).

Consideration given to earth pressures tending to Produce rotating moment

A trapezoidal load distribution, as illustrated in figure 5, results whenever a rotating moment is applied to a retaining wall or abutment, and in this figure the point, O, may be considered as at the toe. There is no danger of failure of the undersoil if the cohesion of the supporting soil corresponding to the maximum allowable movement of the wall or abutment exceeds $\frac{p_{0}}{\pi}$. If the cohesion is less than this greatest shearing stress, it does not follow that failure of the undersoil will result although a plastic region at the toe is likely to be developed, and in this case the stress relations as given by formulas (14), (15), (16), and (17) no longer apply. The whole system of stress distribution is then changed. Prior to further consideration of this subject, it is necessary to consider the earth pressures tending to produce the rotating moment.

There are two principal kinds of soil deformation caused by load: (1) Volume change; and (2) distortion resulting from shear. Volume change results when a compressible soil stratum is consolidated by causing water to escape from the stratum under pressure into one or more permeable strata (drainage courses) bounding the compressible soil layer. On the other hand, it is assumed that distortion alone produces no volume change in a soil. One of the basic principles
of soil mechanics has been that a soil maintained at a constant moisture content is incompressible. This could be true, of course, if the voids are completely filled with water and if each individual soil particle is assumed to be capable of a change in shape but not in volume, in which case the value of Poisson's ratio would be $\frac{1}{2}$.

The magnitude of distortion caused by shearing stresses depends on the magnitude of the stresses and the shearing resistance of the soil. It may proceed slowly and cause a slow subsidence of the supporting soil, or it may occur very quickly as in a landslide. The relatively slow displacement may cause failure of the structure without developing a surface of failure or shear in the supporting soil. The allowable deformation depends on the structure, and it may be considerably less than the magnitude of the deformation or distortion that is characteristic of the yield value or ultimate shearing resistance of the soil. Laboratory tests can provide the design engineer with a complete shearing stress-deformation relationship for the soil in question, and this, together with a knowledge of the earth stresses, should be very useful information.

At ultimate failure the shearing stress at any point on the surface of failure is equal to the shearing resistance of the soil at that point, and Coulomb's formula expressing this equality is

$$
\begin{equation*}
s=c+p_{n} \tan \phi \ldots \ldots \tag{18}
\end{equation*}
$$

where s is the total unit shearing resistance and c the cohesion per unit of area. Cohesion may be only a part of the shearing resistance. If friction is developed, the other part is $p_{n} \tan \phi$ where ϕ is the angle of internal friction (limiting value of the angle of obliquity) and p_{n} is the pressure normal to the tangent plane through any given point on the surface of shear. Both c and ϕ are limiting values in this formula, that is, they are values which obtain at the instant of sudden and complete failure of the earth mass.

If the shearing stress in the soil mass equals half the shearing resistance, s, then the factor of safety insofar as the soil is concerned is 2. However, for the structure supported by this soil mass, this number may be meaningless, c and ϕ being ultimate values, and it is preferable to take values of c and ϕ that correspond to the maximum allowable soil deformation for the particular structure. In formula (18) it is assumed that the normal pressure p_{n} is transmitted solely from grain to grain of soil and that no part of p_{n} is hydrostatic pressure. The conditions that exist when a portion of p_{n} is carried by water have been analyzed by Terzaghi. ${ }^{6}$
mohr's graphical method useful in problems of plane strañ
For any material in which ϕ is zero, the shearing strength is not increased by pressure. Thus, a cylindrical specimen of such material, subjected to a load in the direction of its axis, would have theoretically the same shearing strength for a lateral (hydraulic) pressure of zero as for one of considerable magnitude. If ϕ is not zero, the shearing strength increases with increasing lateral pressure, p_{h}. In a cylinder of homogeneous material, the displacements in any two or more different vertical planes through the longitudinal axis are

[^4]

Figure 6.-Graphical Analysis of Stresses in a Compressed Cylinder, Using Mohr's Circle of Stress.
the same. Points in any such vertical plane remain in that plane during the period of stress. Hence, the compressed cylinder is treated as though it were another case of plane strain. For a graphical analysis of the stresses in such a system, Mohr's diagram is very useful. The graphical method is illustrated in its simplest form in figure 6 , and the following procedure enables one to compute the normal stress, p_{θ}, and the shearing stress, s_{θ}, for any plane, θ, through the stressed cylinder, p_{0} and p_{n} being the only applied stresses.
Procedure for computing p_{θ} and s_{θ}.-

1. On the normal stress axis, figure 6 , lay off to scale the distances, $O M$ and $O N$, proportional to p_{h} and p_{v}, respectively.
2. Draw a circle around the diameter, $M N$.
3. The normal stresses, p_{0} and p_{h}, are principal stresses. There are no shearing stresses on the planes (principal planes) to which these stresses are perpendicular. The maximum ordinate to any point on the circle is the radius of the circle. The diameter $=M N=$ $p_{0}-p_{h}$, and the radius is $\frac{p_{0}-p_{h}}{2}=s_{\text {max }}$.
4. A line drawn from M to any point, D, on the circle represents a plane through the center of the cylinder, inclined at an angle, θ, with the horizontal. There are an infinite number of planes through the center of the cylinder and a corresponding infinite number of points on the circle. The normal stress on the plane, θ, through the cylinder is the horizontal distance, $R D$, in the stress diagram,

$$
\begin{aligned}
R D=O E & =O M+M C+C E=O M+M C+C D \cos 2 \theta \\
& =p_{h}+\frac{p_{v}-p_{h}}{2}+\left[\frac{p_{v}-p_{h}}{2}\right] \cos 2 \theta
\end{aligned}
$$

Hence

$$
\begin{equation*}
p_{\theta}=\frac{p_{h}+p_{v}}{2}+\left[\frac{p_{0}-p_{h}}{2}\right] \cos 2 \theta \tag{19}
\end{equation*}
$$

For $\theta=0, p_{\theta}=p_{v}$ and for $\theta=45^{\circ}, p_{\theta}=O C=\frac{p_{0}+p_{h}}{2}$. For $\theta=90^{\circ}, p_{\theta}=p_{h}$.
5. The shearing stress, s_{θ}, on the plane, θ, is the ordinate value, DE. That is,

$$
s_{\theta}=D E=C D \sin 2 \theta
$$

or

$$
\begin{equation*}
s_{\theta}=\left[\frac{p_{0}-p_{h}}{2}\right] \sin 2 \theta \tag{20}
\end{equation*}
$$

For $\theta=45^{\circ}, s_{\theta}$ is a maximum and equal to $\frac{p_{0}-p_{k}}{2}$. For $\theta=90^{\circ}, s_{\theta}=0$ and for $\theta=0, s_{\theta}=0$. Hence on the two mutually perpendicular planes, $\theta=0$ and $\theta=90^{\circ}$, there is no shearing stress, p_{0} being perpendicular to $\theta=0$ and p_{h} to $\theta=90^{\circ}$.

PLANE WHERE SHEARING RESISTANCE EQUALS SHEARING STRESS DETERMINED GRAPHICALLY

In the stressed cylinder, p_{0} is the same on all horizontal planes and p_{h} is the same on all vertical planes. Hence p_{θ} and s_{θ} have constant values on one and the same plane. This condition does not exist in an earth mass where the principal normal stresses vary both in direction and magnitude from one point to another. Hence in an earth mass the Mohr's diagram must be considered with reference to stresses all in the immediate neighborhood of a particular point.

The graphical procedure above described is with reference to stress and without regard to the resistance of the material to stress; and no elastic constants are considered, since the problem is one of plane strain. If the angle, ϕ, characteristic of the material, is not zero and if a cylinder of the material fails in shear under a compression, p_{v}, and a lateral pressure, p_{h}, then if p_{h} is increased to $p_{h}{ }^{\prime}$, the compressive strength, p_{p}, will be increased correspondingly to a value, $p_{v}{ }^{\prime}$. This condition may be represented by two stress circles (see fig. 7), the first having a diameter equal to $p_{0}-p_{h}$ and the second a diameter equal to $p_{0}{ }^{\prime}-p_{n}{ }^{\prime}$. In both instances, failure occurs theoretically on that plane, θ, where the shearing resistance equals the shearing stress according to formula (18). The graphical procedure of determining this plane is as follows (see fig. 7):

1. Describe circles around the diameters, $p_{0}-p_{h}$ and $p_{0}{ }^{\prime}-p_{h}{ }^{\prime}$. The distances, $O M$ and $O M^{\prime}$, represent p_{h} and $p_{n}{ }^{\prime}$, respectively.
2. Draw a straight line tangent to both circles. Draw the lines, $M T$ and $M^{\prime} T^{\prime}$, to the points of tangency. These two lines represent the most dangerous planes and are called the planes of failure. Both are inclined at the same angle, α, with the borizontal.
3. The tangent line called "Mohr's envelope" is inclined at the angle, ϕ, to the horizontal. Its equation is formula (18),

$$
s=c+p_{n} \tan \phi,
$$

c and ϕ being ultimate values. At the origin, $p_{n}=0$ and the shearing resistance at zero normal pressure equals the cohesion, c. The intercept of the envelope line with the shearing stress axis is c and its slope is $\tan \phi$.
From geometry, $2 \alpha=90^{\circ}+\phi$ or $\alpha=45^{\circ}+\frac{\phi}{2}$. If the material is such that $\phi=0$, the most dangerous planes are inclined at 45° to the horizontal.
4. The shearing stress on any plane, for example the plane, $M^{\prime} D$ on the larger circle, is obtained from for-

Figure 7.-Graphical Analysis for Determining Plane of Failure.
mula (20). On the plane, $M^{\prime} D$, the shearing stress is the ordinate $E D$, and the shearing resistance on this plane is $E R=c+p_{\theta} \tan \phi$ where p_{θ} is the pressure normal to the plane, $M^{\prime} D$. The shearing resistance is greater than the shearing stress on this plane, and this condition exists on all planes except the most dangerous ones, where, according to Mohr's theory, the shearing stress equals the shearing resistance. On the plane, $M^{\prime} T^{\prime}$, the shearing resistance, s, is equal to $c+p^{\prime} a \tan \phi$.

In accordance with this theory, failure may be by fracture, as in the crushing of a concrete cylinder, or it may be evidenced by plastic flow, in which case the dangerous planes are planes of "slip" or flow. When plastic yield occurs, helical slip lines (Lüders lines) are often visible on the exterior surface of the cylinder. Visual observations of Lüders lines and fractured surfaces in stressed cylinders of homogeneous materials tend generally to substantiate Mohr's theory, which is essentially a graphical representation of Coulomb's law, formula (18).

EARTH PRESSURES COMPUTED WITH THE AID OF MOHR'S THEORY

It has been previously indicated in this paper that in considering the supporting power of soils conservative values for cohesion and friction (that is, values less than the ultimate) should be taken. Thus the unit cohesion of the undersoil below a fill should not be exceeded by the greatest shearing stress, the unit cohesion in this case being that corresponding to the maximum allowable deformation and therefore less than the ultimate value, symbolized by the letter, c. In the development of Mohr's theory of failure and Coulomb's formula only the ultimate values, c and ϕ, are considered.
There are instances, however, when it is on the side of safety to use only the ultimate values, c and ϕ, in computations. An example is the computation of passive earth pressure against an abutment or retaining wall. The formula for the passive earth pressure is

Figure 8.-Schematic Diagram Showing Earth Mass, Retaining Wall, and Rupture Planes.

$$
p(\text { passive })=p_{1} \tan ^{2}\left(45^{\circ}+\frac{\phi}{2}\right)+2 c \tan \left(45^{\circ}+\frac{\phi}{2}\right)
$$

where p (passive) and p_{1} are principal stresses. It is not safe to underestimate the magnitude of p (passive), which, as seen in this formula, increases as c and ϕ increase and which is produced by the expansion of soil back of a retaining wall. This formula and the one for active earth pressure are developed by the following procedure.

Consider a level earth mass of cohesive and homogeneous soil of great depth and extent. It is assumed that it is possible to cut out a trench of given depth and of great length in the soil mass without any disturbance of the remaining earth. It is next supposed that a rigid wall with bracing is erected (still without disturbing the soil) along the entire length of a side of the perpendicular embankment (see fig. 8). The unit weight of earth is taken as w and if the vertical distance from the surface to a small element of earth touching the wall is H^{\prime}, then the vertical pressure, p_{v}, on the element equals $w H^{\prime}$, assuming zero friction between earth and wall. To this vertical pressure there corresponds a horizontal pressure, p_{h}, and it is assumed that the values, p_{v} and p_{h}, have remained unchanged during the construction of the rigid wall and bracing.

If the wall remains unyielding, the ratio, $\frac{p_{h}}{p_{0}}$, is known as the coefficient of earth pressure at rest. In figure 9, the stresses on the element adjacent to the wall and at a depth, H^{\prime}, are represented by circle (1), the circle for earth pressure at rest. It is assumed that the stresses are transmitted solely from grain to grain of soil. Terzaghi ${ }^{7}$ has estimated the coefficient of earth pressure at rest as being within the limits, 0.70 to 0.75 , in cohesive soils and ranging from 0.40 to 0.45 in sands. Various authors have expressed doubt as to the constancy of this ratio throughout a considerable depth of homogeneous soil. With reference to figure 8 , where for the unyielding wall $\frac{p_{h}}{p_{\pi}}=K$, a constant, the total pressure against a vertical strip of unit width of the wall is $P_{h}=\frac{K p_{v} H}{2}$ where H is the height of the wall. If $K=0.70, H=$ 20 feet, and $w=100$ pounds per cubic foot, then

$$
P_{h}=\frac{K w H^{2}}{2}=\frac{0.7 \times 100 \times 400}{2}=14,000 \text { pounds. }
$$

sample calculations of earth pressures given

Now assume that the wall yields and moves outward to an extent such that the soil mass back of it fails suddenly in shear. The weight of earth and therefore the

[^5]

Figure 9.-Diagrams Showing Active and Passive Earth Pressures and Earth Pressure at Rest.
value of p_{0} at any point along the wall are constant during this occurrence, but (fig. 9) the stress circle has grown and become tangent to the rupture line (Mohr's envelope). This has occurred by reason of a diminution in p_{h} and, with p_{0} constant, the diameter of the circle has increased from $p_{v}-p_{h}$ intermediate to $p_{v}-p_{h}$ minimum, and

$$
p_{h} \text { int. = earth pressure at rest, }
$$

and

$$
p_{h} \min =\text { active earth pressure. }
$$

Failure occurs along the surface AM (fig. 9), inclined at $45^{\circ}+\frac{\phi}{2}$ to the horizontal or $45^{\circ}-\frac{\phi}{2}$ to the vertical.

On the other hand, assume that enough lateral pressure is applied against the wall from the excavated side to cause the earth to shear and be displaced upward. The lateral pressure required to effect this displacement is equal to the passive earth pressure, p_{h} max. (see fig. $9)$. The magnitude of this pressure is denoted by the distance, $O D$, and failure occurs along a plane inclined at $45^{\circ}+\frac{\phi}{2}$ to the vertical ($D D^{\prime}$, fig. 9).

The stress circles, (2) and (3) of figure 9, for the active and passive earth pressures, respectively, are redrawn in figure 10. It is then seen that in circle (2),

$$
\cos \phi=\frac{O^{\prime} M}{O^{\prime} L}=\frac{\frac{p_{0}-p_{h} \min .}{2}}{O^{\prime} B+B L}=\frac{\frac{p_{0}-p_{h} \min .}{2}}{c+\left[\frac{p_{0}+p_{h} \min .}{2}\right] \tan \phi}
$$

Then

$$
\frac{p_{h} \min .}{p_{v}}=\frac{1-\sin \phi}{1+\sin \phi}-\frac{2 c \cos \phi}{(1+\sin \phi) p_{0}}
$$

and hence

$$
\begin{equation*}
p_{h} \min .=p_{0} \tan ^{2}\left(45^{\circ}-\frac{\phi}{2}\right)-2 c \tan \left(45^{\circ}-\frac{\phi}{2}\right)-\cdots \tag{21}
\end{equation*}
$$

With reference to circle (3), figure 10 , it is evident that the relationship of p_{0} to p_{h} max. is the same as that of $p_{h} \min$. to p_{v}, that is,

$$
p_{o}=p_{h} \max . \tan ^{2}\left(45^{\circ}-\frac{\phi}{2}\right)-2 c \tan \left(45^{\circ}-\frac{\phi}{2}\right)
$$

or

$$
p_{h} \max =\frac{p_{0}}{\tan ^{2}\left(45^{\circ}-\frac{\phi}{2}\right)}+\frac{2 c}{\tan \left(45^{\circ}-\frac{\phi}{2}\right)}
$$

Figure 10.-Diagrams Showing Active and Passive Earth Pressures.
and hence

$$
\begin{equation*}
p_{n} \max =p_{v} \tan ^{2}\left(45^{\circ}+\frac{\phi}{2}\right)+2 c \tan \left(45^{\circ}+\frac{\phi}{2}\right) \ldots \tag{22}
\end{equation*}
$$

Take $c=200$ pounds per square foot and $\phi=20^{\circ}$ with reference to the illustration, figure 8 , then
p_{h} min. $=0.490 p_{0}-280$ pounds per square foot, and
p_{h} max. $=2.039 p_{v}+571$ pounds per square foot.
For $w=100$ pounds and $H=20$ feet, the average p_{0} will be 1,000 pounds per square foot. Then, in summary, the total forces exerted against the wall by earth pressure at rest, active earth pressure, and passive earth pressure are:

Total lateral pressure on 1 -foot vertical strip of wall
For earth pressure at rest_ $0.7 \times 1,000 \times 20=14,000$ pounds.
For active earth pressure $\ldots(490-280) \times 20=4,200$ pounds.
For passive earth pressure - $(2,039+571) \times 20=52,200$ pounds.
Terzaghi ${ }^{8}$ has shown that passive earth pressure may be exerted by clay soils against retaining walls. Such soils tend to expand and shrink noticeably, according to seasonal climatic variations. Hence, walls strong enough to withstand the pressure of a cohesionless backfill are gradually and intermittently pushed out of plumb by the swelling of a cohesive clay soil, characterized by low permeability and appreciable volume changes on wetting and drying. On swelling, the backfill exerts passive earth pressure against the wall.

In the foregoing discussion and with reference to figures 8 and 9 , the wall was assumed as vertical and parallel in direction to the principal plane to which p_{n} is normal. The surface of the backfill being level with the top of the wall and the friction between the wall and backfill material being taken as zero, there is no difficulty in locating the planes of failure for active and passive earth pressures. In both cases the resultant earth pressure (usually designated as E) is located at one-third the distance upward from the bottom of the cut, assuming that p_{v} increases directly with depth.

SHEARING PLANE DETERMINED BY GRAPHICAL METHODS

For the more general case the surface of the backfill is not level; there is a certain amount of friction between the backfill material and the wall; the wall is not parallel to a principal plane; and the force exerted against the wall is not horizontal. The analysis of the general

[^6]

ACTIVE EARTH PRESSURE

PASSIVE EARTH PRESSURE

$$
\begin{gathered}
N=\text { NORMAL FORCE, } T=F R I C T I O N A L ~ F O R C E ~ \\
\\
\text { ANDE AND } Q \text { ARE RESULTANT FORCES }
\end{gathered}
$$

Figure 11.--Force Diagrams for Active and Passive Earth Pressures.
case is that of Coulomb and this method deals with forces rather than stresses. One basic assumption is that the surface of failure is, for all practical purposes, a plane (actually it is more nearly an arc of a circle having a large radius of curvature). The solution is then briefly as follows:

In figure 11, let θ be the angle between the plane of failure and the horizontal, and W the weight of earth which slides when the earth fails. It is assumed that the magnitude of θ is such that the resultant force, E, against the wall is a maximum or, that if E is some function of θ, then $\frac{d E}{d \theta}=0$. It is further assumed that ϕ^{\prime}, the angle of friction between the wall and the earth, is less than ϕ, the angle of internal friction of the earth.

Assume for the present (see fig. 11) that the positions of the failure planes and the angles ϕ and ϕ^{\prime} are known. In the upper diagram of figure 11 for active earth pressure the earth moves downward over the sliding plane, whereas in the lower diagram for passive earth pressure movement of earth is upward over the sliding plane. The tangential forces, both along the wall and sliding plane, are therefore opposite in direction in the two cases. Hence the resultant force E against the wall acts below the normal to the wall in the upper diagram and above the normal to the wall in the lower diagram and likewise the relative positions of the resultant force Q and the normal force N on the plane of failure are different in the two cases.

Figure 12.-Force Diagram and Equilibrium Polygon for Active Earth Pressure.

Figure 13.-Diagram Showing Method of Locating the Sliding Plane for Active Earth Pressure.

The position of the plane of failure cannot, however, be assumed. It must be found. For active earth pressure, let ψ be the angle between the direction of E and the vertical (see fig. 12). From the equilibrium polygon of forces, as shown in this figure,

$$
\begin{equation*}
E=\frac{W \sin (\theta-\phi)}{\sin (\theta-\phi+\psi)} \cdots \tag{23}
\end{equation*}
$$

and, for E to be a maximum,

$$
\frac{d E}{d \theta}=0=\frac{\sin (\theta-\phi+\psi)\left[\frac{d W}{d \theta} \sin (\theta-\phi)+W \cos (\theta-\phi)\right]}{-W \sin (\theta-\phi) \cos (\theta-\phi+\psi)}
$$

That is,
$W[\sin (\theta-\phi+\psi) \cos (\theta-\phi)-\sin (\theta-\phi) \cos (\theta-\phi+\psi)]$

$$
=-\left[\frac{d W}{d \theta}\right] \sin (\theta-\phi) \sin (\theta-\phi+\psi)
$$

Figure 14.-Diagram Showing Method of Locating the Sliding Plane for Passive Earth Presstre.
Therefore

$$
\begin{equation*}
W=\left[-\frac{d W}{d \theta}\right]_{\theta 1} \frac{\sin \left(\theta_{1}-\phi\right) \sin (\theta-\phi+\psi)}{\sin \psi} \ldots \tag{24}
\end{equation*}
$$

where θ_{1} is the value of θ for which E is a maximum.
In figure 13 the line $O C=l$ and the area of the shaded triangle is approximately $\frac{1}{2} l^{2} d \theta$. The weight of earth in the shaded triangle is

$$
-(d W)_{\theta_{1}}=\frac{1}{2} w l^{2}(d \theta)_{\theta_{1}}
$$

or

$$
\begin{equation*}
\left[-\frac{d W}{d \theta}\right]_{\theta_{1}}=\frac{1}{2} w l^{2} \ldots \ldots \ldots \tag{25}
\end{equation*}
$$

Draw $O D^{\prime}$, inclined at the angle ϕ with the horizontal, and draw $C D$ to intersect $O D^{\prime}$ at the angle ψ. Drop the perpendicular, h, from C to $O D^{\prime}$. Then

$$
\frac{m}{l}=\frac{\sin \left[\pi-\left(\theta_{1}-\phi+\psi\right)\right]}{\sin \psi}=\frac{\sin \left(\theta_{1}-\phi+\psi\right)}{\sin \psi}
$$

where $m=O D$. Furthermore, $\frac{\sin \left(\theta_{1}-\phi\right)}{\sin 90^{\circ}}=\frac{h}{l}$ and substituting this value, together with $\frac{m}{l}$ and $\frac{1}{2} w l^{2}$ from formula (25) in formula (24), there is obtained

$$
\begin{equation*}
W=\frac{1}{2} w l^{2} \times \frac{h}{l} \times \frac{m}{l}=\frac{w h m}{2} \tag{26}
\end{equation*}
$$

Hence W is equal to the area $C O D \times w$ (fig. 13). Obviously for a maximum active earth pressure, the area $O A C D$ (fig. 13) must be divided equally so that the area of the triangle $A O C=$ area of $C O D$, and $C D$ may be moved parallel to itself until this condition obtains, and triangle (1) is equal in area to triangle (2) (fig. 13).

For determining passive pressures, except for minor changes, the procedure is the same as that for active pressures. The slight differences are shown in figure 14. Here the line $O D^{\prime}$ is drawn below the horizontal rather than above it, the angle between $O D^{\prime}$ and the horizontal being ϕ in both active and passive pressure diagrams. For passive earth pressure (see fig. 14),

$$
\begin{equation*}
E=\frac{W \sin (\theta+\phi)}{\sin (\theta+\phi+\psi)} \tag{27}
\end{equation*}
$$

Setting $\frac{d E}{d \theta}=0$ as before and designating the value of θ for which E is a maximum as θ_{1},

$$
\begin{equation*}
W=\left[-\frac{d W}{d \theta}\right]_{\theta_{1}}^{\sin \left(\theta_{1}+\phi\right) \sin \left(\theta_{1}+\phi+\psi\right)} \sin \psi- \tag{28}
\end{equation*}
$$

and except for the sign of ϕ, formula (28) is the same as (24), which is for active earth pressure. By moving the line $C D$ (which makes an angle, ψ, with $O D^{\prime}$), parallel to itself, its position when the area of triangle $O A C=$ area $O C D$, meets the requirement that E is a maximum and therefore that $O C$ is the sliding plane.

MAXIMUM EARTH STRESSES MUST BE PROVIDED FOR IN DESIGN

There are various graphical procedures ${ }^{9}$ used in computing active and passive earth pressures and their distributions against retaining walls. The procedures are merely simplified forms of the foregoing combined analytical and graphical procedures. In addition to simplification, it is on the side of safety to take ϕ^{\prime} as zero. The pressure distribution against the wall is triangular, increasing from zero at the top to a maximum at the base. The resultant force (total pressure), E, is considered as applied at the intersection of the medians of this triangle, and this is one-third of the distance upward from the base of the fill.

Vertical pressure under an abutment.-Because of an overturning moment ${ }^{10}$ caused by any of the three earth pressures (active, passive, or earth pressure at rest) the vertical pressure distribution under an abutment is in general trapezoidal (see fig. 5), the greatest pressure, p_{o}, being directly under the toe. As shown previously in this paper, if the cohesion of the supporting soil exceeds $\frac{p_{0}}{\pi}$ there is no danger of failure of the undersoil. On the other hand, if the cohesion is less than $\frac{p_{0}}{\pi}$, failure of the undersoil is not inevitable.

One may go farther in this case and apply the general method of Hogentogler and Terzaghi ${ }^{11}$ in investigating the stability of the supporting soil. The analysis is illustrated in figure 15. In computing the greatest shearing stress at any point in the undersoil and also in

[^7]

Figure 15.-Diagram Showing Method of Computing Supporting Power of Soil Below Bridge Abutment.
connection with any computations of settlement of the abutment (fig. 15) resulting from slow consolidation of one or more compressible soil strata below the abutment, it is necessary to determine the load diagram (such as $A A^{\prime} B^{\prime} B$, upper diagram of fig. 15) and use it without transformation. However, in the following investigation of the possibility of the development of surface failure in the supporting soil ($A C D$, fig. 15) it is on the side of safety to consider the load transmitted by the wall or abutment as uniformly distributed along the plane, $A B$. For since the wedge, $A B C$, tends to move downward along the plane, $A C$, and push out and upward the wedge, $B C D$, along the plane, $C D$, it is obvious that an excess of pressure at B over that at A offers resistance to the forward movement of the wedge, $A B C$.

FORCES COMPUTED FOR CONDITIONS OF EQULIBRIUM
With reference to figure 15 , the average pressure along $A B$ is $\frac{p^{\prime}+p_{0}}{2}=q$, and it is assumed that this acts uniformly over $A B$. The vertical section is supposed to be of unit thickness in the direction perpendicular to the plane of the paper. Neglecting frictional resistance along $A B$ and the shearing resistance of the surcharge of thickness, d, above the plane, $B D$, is again on the side of safety and simplifies the problem. Use is now made of the principles of active and passive earth pressures. The angle $\alpha=45^{\circ}-\frac{\phi}{2}$. The shearing plane for active earth pressure, as already shown, is inclined at an angle of $45^{\circ}-\frac{\phi}{2}$ with the vertical, and the shearing plane for passive earth pressure is inclined at $45^{\circ}+\frac{\phi}{2}$ $=90^{\circ}-\alpha$ to the vertical (see figs. 8 and 9). Assume that the unit weight, w, of the undersoil is constant throughout the region indicated in figure 15. Computations will be made in terms of forces and not stresses.

The total vertical load on $A B$, of width a, is equal to $Q=q a$. The weight of the wedge, $A B C$, is $\frac{w(A B \times B C)}{2}$ or weight $=\frac{w a^{2} \cot \alpha}{2}=W$. Then the total vertical force acting on the wedge, $A B C$, is $a q+\frac{w a^{2} \cot \alpha}{2}$

This downward force is resisted by the vertical component of the cohesion along $A C$, which is $c a \cot \alpha$ and by the vertical component, $R_{1} \cos \alpha$, where R_{1} is the resultant of the normal and frictional forces on $A C$. Then for a condition of equilibrium,

$$
R_{1} \cos \alpha+c a \cot \alpha=\alpha q+\frac{w a^{2} \cot \alpha}{2}
$$

or

$$
\begin{equation*}
R_{1} \cos \alpha=a q+\frac{w a^{2} \cot \alpha}{2}-c a \cot \alpha \ldots \ldots \tag{29}
\end{equation*}
$$

Similarly for equilibrium $R_{1} \sin \alpha-c a=H_{1}$ or

$$
\begin{equation*}
R_{1} \sin \alpha=H_{1}+c a_{-} \tag{30}
\end{equation*}
$$

Dividing equation (30) by (29),

$$
\tan \alpha=\frac{H_{1}+c a}{a q+\frac{w a^{2} \cot \alpha}{2}-c a \cot \alpha}
$$

Hence

$$
\begin{equation*}
H_{1}=\frac{w a^{2}}{2}+a q \tan \alpha-2 c a \ldots \ldots \tag{31}
\end{equation*}
$$

Now consider forces acting on the wedge, $B C D$. The weight of the surcharge on the plane, $B D$, is $w d \times$ $B D$ or $v d a \cot ^{2} \alpha=Q_{1}$. The weight of the wedge, $B C D$, is $\frac{w}{2} B C \times B D=\frac{1}{2} w a^{2} \cot ^{3} \alpha=W_{1}$. The total downward force is then $Q_{1}+W_{1}$ and this together with the vertical component of the cohesive resistance along $C D$ must equal the upward component, $R_{2} \sin \alpha$ for a condition of equilibrium to obtain. That is,

$$
\begin{equation*}
R_{2} \sin \alpha=\frac{w a^{2} \cot ^{3} \alpha}{2}+w d a \cot ^{2} \alpha+c a \cot \alpha_{-} \tag{32}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
R_{2} \cos \alpha=H_{2}-c a \cot ^{2} \alpha \ldots \ldots \tag{33}
\end{equation*}
$$

Dividing equation (32) by (33) and solving for H_{2},

$$
\begin{equation*}
H_{2}=\frac{w a^{2} \cot ^{4} \alpha}{2}+w \cdot d a \cot ^{3} \alpha+2 c a \cot ^{2} \alpha \ldots \tag{34}
\end{equation*}
$$

For equilibrium, $H_{1}=H_{2}$ and from equations (31) and (34), therefore,
$\frac{w a^{2}}{2}+a q \tan \alpha-2 c a=\frac{w a^{2} \cot ^{4} \alpha}{2}+w d a \cot ^{3} \alpha+2 c a \cot ^{2} \alpha$ and hence

$$
\begin{equation*}
q=\frac{2 c}{\tan \alpha \sin ^{2} \alpha}+\frac{w a}{2 \tan \alpha}\left[\frac{1}{\tan ^{4} \alpha}-1\right]+\frac{w d}{\tan ^{4} \alpha-} \tag{35}
\end{equation*}
$$

where q is the bearing capacity or supporting power of the undersoil. For $\phi=0$, as is the case in a purely cohesive soil, $q=4 c+w d$, which means that the supporting power is independent of a, the width of the bearing area. In a compression test of an unconfined cylinder of the purely cohesive soil, $p_{b}=0$ and $p_{v}=$ compressive strength $=2 c$, since $c=\frac{p_{0}-p_{h}}{2}=\frac{p_{v}}{2}$. Hence for such a soil and with reference to figure 15 , the supporting power, q, is equal to twice the compressive strength
(as determined in an unconfined cylinder compression test) plus wd.

If the supporting soil is clay, ϕ is small and

$$
\begin{equation*}
q=4 c+w d_{\ldots} \tag{36}
\end{equation*}
$$

is a safe working formula. Therefore if the supporting undersoil is clay, the design engineer is first of all concerned with the relative magnitudes of the cohesion and $\frac{p_{0}}{\pi}$. If the cohesion is greater than $\frac{p_{0}}{\pi}$ (the cohesion being a conservative value based on the allowable displacement of the structure), the problem ends there. If the cohesion is less than $\frac{p_{0}}{\pi}$, then q must not exceed $4 c+w d$ in any case, the value q being the average unit vertical load transmitted by the wall or abutment to the undersoil. For conditions in which ϕ is greater than zero, q may be computed directly from equation (35).

METHOD BASED ON PLANE STRAIN HAS LIMITATIONS

For a uniform surface load over a long strip of parallel sides, Prandtl's method ${ }^{12}$ yields $q=5.14 c$ for a purely cohesive soil, $\phi=0$, and for the same conditions the method of Krey ${ }^{13}$ gives $q=6.6 c$.

The legitimate use of the formulas for plane strain in connection with abutment and retaining wall problems depends chiefly on the ratio of length to width of the footing. There have apparently been no rules as to procedures where this ratio is small. Furthermore, for a rectangular footing whose length is not great in comparison to its width, there are apparently no formulas for stresses other than the vertical one, p_{2} and the lateral ones p_{x} and p_{y}, to be found in current literature. It is interesting therefore to compute p_{2} for a relatively long footing both by the formula as applicable to the case of plane strain and by the formula for the case involving three dimensions. It should be noted that p_{z} is independent of elastic constants in either method of computation, and it is the only stress having this characteristic.

In order to indicate the limitations of the method based on plane strain, four different footings will be considered. These are:

$$
\begin{aligned}
& \text { No. 1-n-- } 50 \text { feet long, } 8 \text { feet wide. } \\
& \text { No. 2-n- } 30 \text { feet long, } 10 \text { feet wide. } \\
& \text { No. 3 } \\
& \text { No. } 4
\end{aligned}
$$

It is assumed that there is a uniform load distribution of 3 tons per square foot on each of these four footings. The vertical pressure, p_{z}, at any point in the earth at a depth of z feet below the footing is then computed by two different methods. These are:
a. The method based on plane strain.
b. The method based on rectangles using Newmark's tables ${ }^{14}$ for convenience.

Newmark's method is both convenient and precise. Another method has been shown in a previous publication ${ }^{15}$ and in its use the rectangular footing is sub-

[^8]

Figure 16.-Diagram Showing Values Involved in Computing the Normal Stress p_{z}.
divided into elements. The load on each element of area is then considered as a point load at the center of the element of area. The computation of p_{2} by either method, (a) or (b), involves no elastic constants. The formulas for p_{2} as developed by Boussinesq for a point load and as extended by others do not involve elastic constants.

With reference to figure $16 \mathrm{~A}, p_{z}$ will be computed for depths of $5,10,15$, and 20 feet along vertical lines through the points, C, the center of footing, O, the midpoint of an end, and M, the midpoint of a side. For the method of plane strain, the general formula is

$$
\begin{equation*}
p_{z}=\frac{p}{\pi}(\alpha+\sin \alpha \cos 2 \beta) \tag{37}
\end{equation*}
$$

where α and β are the angles shown in figure 16 B . Along the vertical line $C Z, 2 \beta=0$ and formula (37) becomes

$$
\begin{equation*}
p_{z}=\frac{p}{\pi}(\alpha+\sin \alpha)_{-} \tag{38}
\end{equation*}
$$

Along the vertical line, $O Z$, for points below O at the end of the footing, half the value of p_{z} as determined by formula (38) must be taken. For points on 'MZ' figure $16 \mathrm{~B}, 2 \beta=\alpha$.

Newmark's tables are based on values for p_{2} at points on a vertical line through a corner of rectangles of various sizes. Thus, the point, C, of figure 16 A is a corner common to each of the four rectangles, $1,2,3$, and 4 , all of the same dimensions. The value p_{z} for a point on $C Z$ is first obtained for one of these rectangles, and this value multiplied by 4 gives p_{z} (for a point on $C Z$) as resulting from the load on the entire footing. Similarly, the point, O is a corner, common to the two rectangles, 1 and 2, taken together and 3 and 4 taken together.

An example will clarify the two methods of computing p_{2}. It is desired to know p_{2} at 20 feet below the point, C, for footing No. 3, 10 feet by 30 feet, the unit load being 3 tons per square foot. The rectangles, 1, 2, 3, and 4 are each 5 feet by 15 feet,

$$
\sin \alpha=2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}=2\left[\frac{5}{\sqrt{425}} \times \frac{20}{\sqrt{425}}\right]=\frac{200}{425}=0.471
$$

and hence $\alpha=0.490$ in radians. Then by formula (38),

$$
p_{2}=\frac{3}{\pi}(0.490+0.471)=0.92 \text { tons per square foot. }
$$

From Newmark's tables, $m=\frac{5}{20}=0.25=$ the width of one of the rectangles, $1,2,3$, or 4 , divided by the depth, 20 feet, and $n=\frac{\text { length }}{\text { depth }}=\frac{15}{20}=0.75$. The "coefficient"
corresponding to $m=0.25$ and $n=0.75$ is 0.05986 . This is first multiplied by 4 for the 4 rectangles and then by 3 tons per square foot, that is,

$$
p_{z}=0.05986 \times 12=0.72 \text { tons per square foot. }
$$

In this manner, the values for p_{2} in table 1 are computed for the footings, 8 by 50 feet, 10 by 35 feet, 10 by 30 feet, and 10 by 20 feet, each with a uniform load of 3 tons per square foot, and at various depths below the points C, O, and M (fig. 16).

Table 1.-Values of p_{z} computed by methods based on plane strain and on reclangles, assuming a uniform loading of 3 tons per square foot

Size of footing (feet)	Depth of point considered	Vertical pressure, $p_{\text {a }}$					
		Below point C by method based on-		Below point O by method based on-		Below point M by method based on-	
		Plane strain	Rectangles	Plane strain	Rectangles	Plane strain	Rectangles
10 by 20.......-		Tons per	Tons per	Tons per	Tons per sq. ft. 1. 23	Tons per	Tons per sq. ft. 1. 39
	10	1.65	$\begin{aligned} & 2.40 \\ & 1.44 \end{aligned}$	$\begin{array}{r} 1.23 \\ .82 \end{array}$. 81		1. 05
	15	1. 28	1. 44 .94	. 64	. 57	1. 23	
	20	. 92	. 57	. 46	. 40	. 82	$\begin{array}{r} .50 \\ 1.43 \end{array}$
	5	2. 46	2. 44	1. 23	1. 23	1. 44	
10 by 30......--	15	1. 65	1. 57	.84.46	. 82	1. 02	
		1. 28	1.02		. 60		1.16 .90
		. 92	. 72		. 44	. 82	. 64
	5	2. 46	2. 45	1. 23	.44 1.23	1. 44	1.431.18
	10	1. 65	1. 60	. 82	. 82	1. 23	
10 by 35.	15	1.28	1. 12	. 64	. 60	1.02	1.18 .94
	20	. 92	. 77	. 46	. 44	. 82	. 69
	5	2. 22	2. 22	1. 11	1. 11	1. 40	1.39
8 by 50.	10	1.39	1.37	$\begin{array}{r} .69 \\ .37 \end{array}$	$\begin{array}{r} .69 \\ .37 \end{array}$	$\begin{array}{r} \text { 1. } 11 \\ .69 \end{array}$	$\begin{array}{r} 1.10 \\ 1.64 \end{array}$
	20	. 74	. 69				

RESULTS OBTAINED BY TWO METHODS COMPARED
For a given footing it is seen in table 1 that the difference in values for p_{z} as computed by the two methods increases with depth. The method based on plane strain is based on the assumption that the loaded foundation is of "infinite" length. Only finite lengths are considered in table 1 and for this reason the values obtained by the method based on rectangles are considered to be the correct ones.

In the light of present knowledge it is not possible to compute shearing stresses by the method based on rectangles but it is possible to do this by the method based on plane strain. As indicated previously it is necessary to know the shearing stresses and for this reason it is desirable to use the method based on plane strain when the error involved in so doing is not too large. Since it is possible to compute p_{z} for different points at a given depth by both methods, it should be reasonable to assume that if the values so computed are in fairly good agreement, then the analytical
method illustrated in figure 15 and based on the assumption of plane strain conditions is applicable in any case when the failure plane ($A C$, fig. 15) does not extend below the depth in question.

In making use of table 1 it should be borne in mind that the ratio of width to length of a footing is the important consideration. Thus, any conclusion reached with respect to the footing that is 10 feet wide and 30 feet long is applicable also to a footing that is 20 feet wide and 60 feet long, or 5 feet wide and 15 feet long, etc.

Another point to be considered is the following: In figure 15, illustrating failure under an abutment, the soil moves out in but one direction, that is, along plane $C D$ which is on the open side of the abutment or retaining wall. The depth $B C$ in this case is the width, a, multiplied by $\cot \left(45^{\circ}-\frac{\phi}{2}\right)$. Thus, for $\phi=0, B C$ (the depth to which the failure plane $A C$ extends) is equal to a. On the other hand the supporting soil under a bridge pier is free to move out in two directions rather than but one. Then from symmetry the depth to which the failure plane extends under a pier is $\frac{a}{2} \cot \left(45^{\circ}-\frac{\phi}{2}\right)$ where a is the width of the pier.

To illustrate, if the 10 by 30 -foot footing of table 1 is a bridge pier and if $\phi=0$, the plane of failure extends to a depth of 5 feet below the pier. For points at this depth it is seen in table 1 that the values for p_{z} computed by the two methods is in good agreement. On the other hand if the base of an abutment has these same dimensions and ϕ of the supporting soil is zero, then the failure plane extends downward to a depth $=a=10$ feet and for this depth there is greater divergence in the two sets of computed values of p_{z}. The more serious consideration then is that of the abutment or retaining wall where the failure plane extends to twice the depth that obtains in the caseof a pier.

As ϕ increases, $\cot \left(45^{\circ}-\frac{\phi}{2}\right)$ increases and the depth ($B C$ figure 15) $=a \times \cot \left(45^{\circ}-\frac{\phi}{2}\right)$ increases. A few computed values are as follows:
ϕ, degrees
0
$10 \ldots$
$20 \ldots$
$22 \ldots$
$30 \ldots$
38
ϕ, degтees
0
10
20
22
30
38

$$
\begin{aligned}
& \text { Depth of } \\
& \begin{array}{l}
\text { Depth of } \\
\text { ailure plane }
\end{array} \\
& \text { - } \quad a \\
& \text { 1. } 19 a \\
& \text { 1. } 43 a \\
& \text { 1. } 48 a \\
& \text { 1. } 73 a \\
& \text { 2. } 05 a
\end{aligned}
$$

For $\phi=0$ and for a bridge pier of the dimensions shown in table 1, the failure plane extends down to 4 feet below the last footing and to 5 feet below the other three. Since at this depth the agreement in the two sets of computed p_{2} values is good in all cases, it is concluded that for any bridge pier having the same relative dimensions as those shown in table 1 , the analytical method, assuming the method based on plane strain, is well warranted if $\phi=0$. If the first footing is excepted the same conclusion is reached in the case of abutments or retaining walls of the same relative dimensions. In this case the plane of failure extends down to 10 feet below the first three footings. The divergence in $p_{2}, 1.57$ to 1.65 tons per square foot below point C and 1.16 to 1.23 below point M (fig. 16) at 10 feet below the 10×30-foot footing is not considered as being serious.

By the same reasoning it is conchuded that if the failure plane does not extend below $11 / 2$ times the width of the base of the abutment or retaining wall, the analytical method assuming plane strain conditions is warranted for any footing having a length-to-width ratio of 3 or greater. This includes all types of supporting soils having a value of ϕ of about 22°. The value of ϕ for most clays seldom exceeds 20° and this type of soil is usually the most dangerous insofar as supporting power is concerned. Values of ϕ exceeding 20° are characteristic of soils of considerable sand content. The value of ϕ for sands ranges usually from 35 to 40°, an approximate average value being 38° for which the failure plane extends to a depth of $1.73 a$ for an abutment and to $0.87 a$ for a pier.

CONCLUSIONS

The following conclusions are believed warranted:

1. The analytical method, assuming plane strain conditions, is applicable for all bridge piers of the relative dimensions given in table 1 (length-to-width ratio of 2 or greater) and for all values of ϕ ranging from 0 to values characteristic of sand.
2. The same analytical method is warranted for bridge abutments and retaining walls when the length-to-width ratio of the base is 3 or greater, ϕ having any value ranging from 0 to 22°. This includes practically all clays which present the major problem with respect to supporting power.

In the absence of percolating water or hydrostatic uplift, sands do not generally present a serious problem.

It is possible to check the accuracy of the assumption of conditions of plane strain by computations of the stress, p_{z}. It is not possible to check the assumption by computations of values of all other stresses. On account of this fact there is no check on the reasonableness of the assumption of conditions of plane strain other than the agreement of p_{z} values as computed by the method based on rectangles and by the method based on plane strain. A study of past and current soil mechanics literature does not indicate any means of computing by methods using three dimensions the shearing stresses at points below a rectangular loaded area.

The problem has, however, been solved in part for a loaded circular area ${ }^{16}$ and Jürgenson ${ }^{17}$ computes the stresses below a square footing by assuming a circle of equivalent area. For the loaded circular area, the analysis is limited to merely computing the stresses at any point below. Thus, it is known that the greatest shearing stress is equal to $\frac{p}{\pi}$, where p is the unit load (when the load distribution is uniform) and this shearing stress exists at all points immediately beneath the perimeter.

For a circular footing there is as yet no solution to the problem of determining the supporting power of the undersoil when c, the unit cohesion, is less than $\frac{p}{\pi}$. Nadai ${ }^{18}$ shows that on the basis of experiment the forcing of a punch of cylindrical cross section into a plastic metal produces flow figures in the shape of logarithmic spirals, and the same phenomenon is ob-

[^9]served in the heads of boilers subjected to plastic bending under an axially symmetrical stress field. There is, however, no adequate theory to account for this occurrence.

Only rigid footings and static loads have been assumed and considered in this paper. The case of flexible footings presents complicated factors which for the most part have not as yet been satisfactorily accounted for. The problem of dynamic loading still awaits a theoretical solution substantiated by ample experimental data.

THE COVER PICTURE

The value of preserving trees and protecting them from damage during highway construction is shown by the cover picture. This section of U. S. Highway No. 1, near Brunswick, Maine, passes through a pine forest known as "The Bowdoin Pines."

Modern highways are designed so as to preserve the natural beauty of the roadside without sacrifice of service or utility. This has been successfully done on the highway shown. Here the grade of the highway is at approximately the same elevation as the surface of the adjacent ground. Note how the undergrowth screens the bases of many of the large trees, and how inconspicuous the poles and wires become.
STATUS OF FEDERAL-AID HIGHWAY PROJECTS
AS OF NOVEMBER 30,1938

[^0]: ${ }^{1} 1$ The Theory of Soil Consolidation and Testing of Foundation Soils, by L. A. Palmer and E. S. Barber, Public Roads, vol. 18, No. 1, March 1937.

[^1]: ${ }^{2}$ Direct Determination of Stresses, by S. D. Carothers, Proceedings of the Royal Society of London, Series A, vol. 97, p. 110 et seq.

 Elastic Equivalence of Statically Equipollent Loads, by S. D. Carothers, Pro ceedings of the International Mathematical Congress, vol. 2, Toronto University Press, 1924. p. 527 et seq.
 Engineering Engineering, London, July 4, 1924, p. 1 et seq.

[^2]: ${ }^{3}$ See, for example, pp. 16 to 19, inclusive, of Theory of Elasticity, by S. Timoshenko. McGraw-Hill Book Co., 1934.

[^3]: ${ }^{4}$ Principles of Soil Mechanics Involved in Fill Construction, by L. A. Palmer and E. S. Barber, Proceedings of the Highway Research Board, Annual Meeting,
 s Prandtl's formula as originally derived pertains to uniform strip loading. The formula is adapted to the case of trapezoidal loading (fill) by reconstruction of the load diagram, changing the trapezoid (fig. 3) to a rectangle of equal area.

[^4]: Sheare Shearing Resistance of Saturated Soils and the Angle between the Planes of Shear, by Dr. Charles Terzaghi, vol. I, pp. 54 to 56, inclusive, Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1936.

[^5]: 7 A Fundamental Fallacy in Earth Pressure Computations, by Charles Terzaghi, publications from the Graduate School of Engineering, Harvard University, 1935-36, No. 182, Soil Mechanics Series No. 3.

[^6]: ${ }^{8}$ The Mechanics of Shear Failures on Clay Slopes and the Creep of Retaining Walls, by Charles Terzaghi, Public Roads, vol. 10, No. 10, December 1929.

[^7]: - See for example, Notes on Soil Mechanics and Foundations, by Fred L. Plummer (Edwards Brothers, Inc., Ann Arbor, Mich.), pp. 128 to 130, inclusive. See also pl. No. 17, p. 20, booklet, Soil Stabilization, published by the American Road Build-
 er's Ass'n, 1938
 For methods of computing the overturning and resisting moments, see pl. No. 16 p. 19, booklet, Soil Stabilization, published by the American Road Builders' Ass'n.,
 ${ }^{11}$ Interrelationship of Load, Road and Subgrade, by C. A. Hogentogler and Charles Terzaghi, Public Roads, vol. 10, No. 3, May 1929.

[^8]: 12 Über die Harte Plastischer Körper Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch Physikalische Klasse, pp. 74-85, 19.0.
 ${ }_{13}$ Erddruck Erdwiderstand und Tragfahigkeit des Baugrundes, H. Krey, pp. 193 and 268.
 14 Simplified Computation of Vertical Pressures in Elastic Foundations, by Nathan M. Newmark, Circular No. 24, vol. 33, No. 4, Engineering Experiment Station, University of illinois, Sept. 24, 1935 .
 15 The Theory of Soil Consolidation and Testing of Foundation Soils, by L. A Palmer and E.S. Barber, Public Roads, vol. 18, No. 1, March 1937.

[^9]: ${ }^{16}$ Treatise on the Mathematical Theory of Elasticity (see p. 190), by A. E. H. Love, 4th ed. Cambridge, University Press, 1934.
 17 The A pplication of Theories of Elasticity and Plasticity to Foundation Problems, by Leo Jürgenson, Journal of the Boston Society of Civil Engineers, vol. 21, No. 3, July 1934.
 ${ }_{18}$ Plasticity, A. Nadai, p. 228, McGraw-Hill Book Co., 1931.

